ераті

EPA-TN-K128 Series Dual Layer SD-WAN and Bonding

Tunnel Settings			Just diversity
Internet Network	Intel Survey Add Rignal Post 30 gr	IP Camera Network	Add Tanniel Add Physical Proc. 31 of
Instanti a functione de la constanti de l	Natural sectors at \$ 0 holdsome substitution at \$ 0 model (model) and \$ * \$ \$ a \$ \$ model (model) (\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		biomediana ■ monte (manage) lancing = r

The Antikor Dual Layer (Layer2 & Layer3) SD-WAN EPA-TN-K128 Series is a Turkish national product that provides secure virtual switching at the Layer2 level in Large Enterprise networks with advanced network and security features. Thanks to its bonding feature, it transfers different types of internet (xDSL, 4.5G, metro, asymmetric fiber, etc.) to the center simultaneously. It can perform packet filtering (Layer2 Firewall) and QoS - Active Bandwidth Management in traffic.

Layer2 Communication over WAN

By extending our local network over our internet connections, we create a closed network by performing secure virtual switching (virtual switching) at the Layer2 level. It works as an uplink between switches. In short, the broadcast domains of both networks are merged.

Switching and Compatibility $C \cap C$

Both Virtual Ports and Physical Ports have the IEEE 802.1Q VLAN feature (Untagged Port Assignment, Tagged Port Assignment and Hybrid Port Assignment). It has High Availability Cluster (Active-Passive Cluster) and Fail-over features.

Multiple VLAN transfer in WAN

In the Antikor Dual Layer SD-WAN solution, independent isolated Virtual Switches can be created, and they are transferred encrypted with the assigned VLANs on the other side. It allows for MAC-IP matching control.

Central Management and Logging

Through the Central Management System and monitoring, bulk settings can be obtained. It sends logs to all SIEM solutions in RAW, CEF, EWMM, GELF, JSON, WELF, CIM formats. It has LACP, LLDP, and Netflow Export services.

ePati Cyber Security Technologies Inc. Mersin Universitesi Ciftlikkoy Kampusu Teknopark Idari Binasi Kat: 4 No: 411 Zip Code: 33343 Yenisehir / MERSIN / TURKIYE

Unified Cyber Security System

EPA-TN-K128 Series

Product Specifications

131.072

Operating Modes	System Performance
Traffic Capturing on:	MAC Table Size
- OSI Layer 2 - Ethernet	Layer2 Throughput (Gbps)
Tunneling over:	Firewall Throughput (Gbps)
- OSI Layer 3 - IPv4 & IPv6	IPsec Throughput (Gbps)
- OSI Layer 3 - Working Behind NAT	Licensing
Virtual Switch Features	Number of Layer2 Tunnels
Assigning Layer2 Tunnels as Virtual Ports	Number of Phys. Ports can be
IPsec Encryption for Layer2 Tunnels	Number of Tunnels can be As
Physical Port Assignment	Number of VLANs for Layer2
IEEE 802.1Q VLAN for both Virtual and Physical Ports:	High Availability (HA) - Clust
- Untag Port Assignment	Number of Addressable CPU
- Tagged Port Assignment	Number of IPsec VPN Tunnel
- Hybrid Port Assignment	Number of Virtual Switches
VLAN Enabled MAC Table	IEEE 802.3ad LACP Support of
IEEE 802.3ad Link Aggregation Control Protocol (LACP)	WAN Bonding
Spanning Tree Protocol	MTU Adaptation for WAN
Rapid Spanning Tree Protocol	Services
Link Layer Discovery Protocol	Live Dashboard
NetFlow Export Service	Automated Update System
MAC Learning	WAN Bonding (Optional)
Ethernet Interface Specifications	SNMP v2/v3 Service
4094 IEEE 802.1Q VLANs for each port	Layer2 Packet Filtering on Tu
IEEE 802.3ad LACP	QoS - Quality of Service on Tu
Virtual Ethernet Interface	Port Grouping
- Loopback	Syslog Service (RAW, CEF, EW
- VLAN subinterface	MAC Learning
IPsec VPN	Authorization Management
Encryption: DES, 3DES, AES, BLOWFISH, CAST128, CAMILIA	Isolated Virtual Switching
Authentication: MD5, SHA1, SHA256, SHA384, SHA512, 3DES, DES	NetFlow Export Service
WildCard ID Support	Incident Notification Service
NAT Traversal Support	- SMS, Email, Browser Not
Assigning different IPsec Profiles for each Layer2 Tunnel	Routing
Management Interface Features	IPv4 / IPv6 Static Routing
HTML5 Responsive Web Interface	OSPF(Open Shortest Path Fire
- SSL Certificate based authentication	Hardware Requireme
- Customizing the service port	Min 16 Core and later Proces
Out of Band Management Plane	Min 16 GB Ram
SSH Console	Min 240 GB Solid State Disc
Physical Console (Monitor, Keyboard)	Min 4 x 1G/10G Ethernet Car

	Layer2 Throughput (Gbps)	8 Gbps
	Firewall Throughput (Gbps)	7 Gbps
	IPsec Throughput (Gbps)	5 Gbps
	Licensing	
	Number of Layer2 Tunnels	Unlimited
	Number of Phys. Ports can be Assigned to a Virtual Swite	h Unlimited
	Number of Tunnels can be Assigned to a Virtual Switch	Unlimited
	Number of VLANs for Layer2 Tunnels	Unlimited
	High Availability (HA) - Cluster Support	Active-Passive
	Number of Addressable CPU Threads	16
	Number of IPsec VPN Tunnels	26
	Number of Virtual Switches	26
	IEEE 802.3ad LACP Support on Virtual Switches	Yes
	WAN Bonding	Yes
	MTU Adaptation for WAN	Yes
	Services	
	Live Dashboard	
	Automated Update System	
	WAN Bonding (Optional)	
	SNMP v2/v3 Service	
	Layer2 Packet Filtering on Tunneled Traffic (Optional)	
	QoS - Quality of Service on Tunneled Traffic (Optional)	
	Port Grouping	
	Syslog Service (RAW, CEF, EWMM, GELF, JSON, WELF, CIM)
	MAC Learning	
	Authorization Management	
	Isolated Virtual Switching	
-	NetFlow Export Service	
	Incident Notification Service	
	- SMS, Email, Browser Notification	
	Routing	
	IPv4 / IPv6 Static Routing	
	OSPF(Open Shortest Path First), BGP(Border Gateway) Pr	rotocols
	Hardware Requirements	
	Min 16 Core and later Processor	
	Min 16 GB Ram	
	Min 240 GB Solid State Disc	
	Min 4 x 1G/10G Ethernet Card	

* Performance tests are performed with the following hardware:

- Intel Xeon D-2146INT Processor, Dual Channel 16 GB DDR4 2400MHz ECC RAM

- 2 x Intel x557 MultiQueue Ethernet Card

** Note: All performance values may vary depending on environmental condiditions, system configuration and equipment.

ePati Cyber Security Technologies Inc. Mersin Universitesi Ciftlikkoy Kampusu Teknopark Idari Binasi Kat: 4 No: 411 Zip Code: 33343 Yenisehir / MERSIN / TURKIYE

eP-FR-79 Rev.02 / Release date: 01.04.2019 / Rev.date: 02.05.2021

